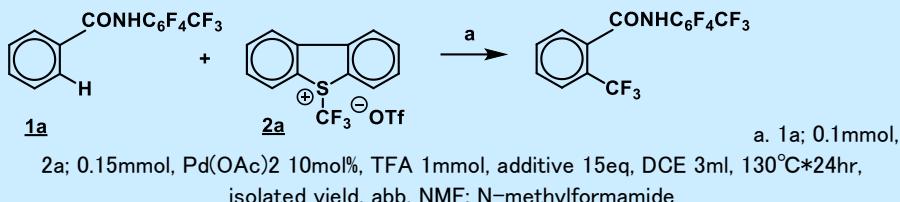


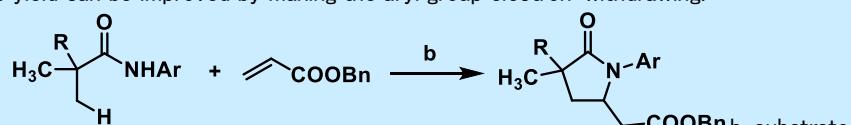
2,3,5,6-Tetrafluoro-4-(trifluoromethyl)aniline


Purity 97%

CAS Number 651-83-2

Molecular Formula C7H2F7N

Molecular Weight 233.09


1. Trifluoromethylated aromatics are considered as basic structures for medicines and agrochemicals. Although there are reports of cross-coupling synthesis between activated aromatics (halogen, boron) and CF₃-forming agents using Pd/Cu catalysts, there are still few methods for directly introducing CF₃ groups into aromatic C-H bonds. Selective introduction of CF₃ groups at the o-position of acidic aromatic amides is achieved with a good yield through the composition of Pd-Cu catalyst + CF₃-C₆F₄-directing group + amide additive + TFA.

No.	Aromatic substrates	additives	Cu(OAc) ₂	Yield(%)
2	C6H5CONHC6F4CF3	DMF 15eq	1 eq	23
3	C6H5CONHC6F4CF3	DMF 15eq	2 eq	57
6	C6H5CONHC6F4CF3	NMF 15eq	2 eq	79
3c	CH3C6H5CONHC6F4CF3	NMF 15eq	2 eq	94
3e	CH3OC6H5CONHC6F4CF3	NMF 15eq	2 eq	89

J. Am. Chem. Soc., 2012, 134, p11948–11951

2. Olefin addition to aliphatic C-H bonds was investigated using the Pd(OAc)₂/ Cu(OAc)₂ catalyst system and N-aryl pivalic acid/benzyl acrylate as a model. It has been found that the yield can be improved by making the aryl group electron-withdrawing.

0.2mmol, 0.1ml C6H5CH2OCOCH-CH₂, 10mol% Pd(OAc)₂, 2.0eq LiCl, 1.1eq Cu(OAc)₂, 1ml DMF, N₂, 120°C*12hr

No.	R	Ar	AgOAc (eq)	Yd (%)
1a	CH ₃	-C ₆ H ₅	-	1
1b	CH ₃	-C ₆ H ₃ (NO ₂) ₂	-	47
1c	CH ₃	-C ₆ F ₅	-	71
1d	CH ₃	-C ₆ F ₄ CF ₃	-	88
8a	H	-C ₆ F ₅	1.1	55
9a	H	-C ₆ F ₄ CF ₃	1.1	91
10a	CH ₃	-C ₆ F ₄ CF ₃	1.1	94

J. Am. Che. Soc., 2010, 132, p3680–3681

Properties:

Appearance Liquid

Boiling point, °C 185-186